A Hong-Krahn-Szegö inequality for mixed local and nonlocal operators

نویسندگان

چکیده

<abstract><p>Given a bounded open set $ \Omega\subseteq{\mathbb{R}}^n $, we consider the eigenvalue problem for nonlinear mixed local/nonlocal operator with vanishing conditions in complement of \Omega $. We prove that second \lambda_2(\Omega) is always strictly larger than first \lambda_1(B) ball B volume half This bound proven to be sharp, by comparing limit case which consists two equal balls far from each other. More precisely, differently local case, an optimal shape does not exist, but minimizing sequence given union disjoint whose mutual distance tends infinity.</p></abstract>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A determinant inequality and log-majorisation for operators

‎Let $lambda_1,dots,lambda_n$  be positive real numbers such that $sum_{k=1}^n lambda_k=1$. In this paper, we prove that for any positive operators $a_1,a_2,ldots, a_n$ in semifinite von Neumann algebra $M$ with faithful normal trace that $t(1)

متن کامل

THE p - FABER - KRAHN INEQUALITY

When revisiting the Faber-Krahn inequality for the principal pLaplacian eigenvalue of a bounded open set in Rn with smooth boundary, we simply rename it as the p-Faber-Krahn inequality and interestingly find that this inequality may be improved but also characterized through the Maz’ya’s capacity method, the Euclidean volume and the Sobolev-type inequality. 1. The p-Faber-Krahn Inequality Intro...

متن کامل

A Faber-Krahn-type inequality for regular trees

We show a Faber-Krahn-type inequality for regular trees with boundary.

متن کامل

THE p-FABER-KRAHN INEQUALITY NOTED

When revisiting the Faber-Krahn inequality for the principal pLaplacian eigenvalue of a bounded open set in Rn with smooth boundary, we simply rename it as the p-Faber-Krahn inequality and interestingly find that this inequality may be improved but also characterized through Maz’ya’s capacity method, the Euclidean volume, the Sobolev type inequality and MoserTrudinger’s inequality. 1. The p-Fab...

متن کامل

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics in engineering

سال: 2022

ISSN: ['2640-3501']

DOI: https://doi.org/10.3934/mine.2023014